top of page
SonomaEye-full-color-vector[2].png

Variations in Irradiation Energy and Rose Bengal Concentration for Photodynamic Antimicrobial Therapy of Fungal Keratitis Isolates

Presenter:

Alejandro Arboleda

Authors:

Alejandro Arboleda, Heather Durkee, Darlene Miller, Mariela C. Aguilar, Karam Alawa, Nidhi Relhan, Guillermo Amescua, Jean-Marie Parel

1. Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA

2. Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL

3. Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL

4. Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL

Affiliation:

Purpose: To assess the efficacy of rose bengal photodynamic antimicrobial therapy (PDAT) using different irradiation energy levels and photosensitizer concentrations for the inhibition of fungal keratitis isolates.

 

Methods: Seven different fungi (Aspergillus fumigatus, Candida albicans, Curvularia lunata, Fusarium keratoplasticum, Fusarium solani, Paecilomyces variotti, and Pseudallescheria boydii) were isolated from patients with confirmed infectious keratitis. Experiments were performed in triplicate with suspensions of each fungus exposed to different PDAT parameters including a control, green light exposure of 5.4 J/cm2, 2.7 J/cm2 (continuous and pulsed), and 1.8 J/cm2and rose bengal concentrations of 0.1%, 0.05%, and 0.01%. Plates were photographed 72 hours after experimentation and analysis was performed to assess fungal growth inhibition.

 

Results: PDAT using 5.4 J/cm2 of irradiation and 0.1% rose bengal completely inhibited growth of five of the seven fungal species. Candida albicans and Fusarium keratoplasticum were the most susceptible organisms, with growth inhibited with the lowest fluence and minimum rose bengal concentration. Fusarium solani, Pseudallescheria boydii, and Paecilomyces variotti were inhibited by lower light exposures and photosensitizer concentrations. Aspergillus fumigatus and Curvularia lunata were not inhibited by any PDAT parameters tested. Continuous and pulsed irradiation using 2.7 J/cm2 produced similar results.

 

Conclusions: Rose bengal PDAT successfully inhibits the in vitro growth of five fungi known to cause infectious keratitis. Differences in growth inhibition of the various fungi to multiple PDAT parameters suggest that susceptibilities to PDAT are unique among fungal species. These findings support modifying PDAT parameters based on the infectious etiology.

bottom of page